A Simple Proof of a Theorem of Sensitivity
نویسندگان
چکیده
We prove that every transitive and non-minimal semigroup with dense minimal points is sensitive. When the system almost open, we obtain a generalization of this result.
منابع مشابه
A simple proof of Zariski's Lemma
Our aim in this very short note is to show that the proof of the following well-known fundamental lemma of Zariski follows from an argument similar to the proof of the fact that the rational field $mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.
متن کاملa comparison of linguistic and pragmatic knowledge: a case of iranian learners of english
در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...
15 صفحه اولa decsription of persian deixis
the significance of the study of deixis was then mentioned. the purpose of the present study from the outset was to provide a comprehensive overview of all kinds of deixis in persian, describing and defining each in true while considering them structurally and semantically. chapter two consisted of two main parts. a review of the english studies in this respect, besides presenting persian liter...
15 صفحه اولA Simple Proof of Sharkovsky's Theorem Revisited
Sharkovsky’s theorem [1], [5], [6] claims its place among the gems of dynamical systems mainly because of its simple hypotheses and strong conclusion. Loosely speaking, it states that, if f is a continuous map from a compact interval I into itself that has a period-m point, then f also has a period-n point whenever m ≺ n in the Sharkovsky’s ordering ≺ of the natural numbers but may not have a p...
متن کاملA simple proof of Sharkovsky’s theorem rerevisited
In proving the celebrated Sharkovsky cycle coexistence theorem, the standard arguments [1, 2] (see also [4, 10, 14]) reduce the proof to considering only the case where the continuous map has periodic orbits of odd periods ≥ 3 (MR591173(82j:58097)) and then prove that some such periodic orbits have the structures of the so-called Štefan cycles and draw the desired conclusions from the directed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Dynamical and Control Systems
سال: 2021
ISSN: ['1079-2724', '1573-8698']
DOI: https://doi.org/10.1007/s10883-021-09555-0